Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Genomics Proteomics Bioinformatics ; 19(5): 707-726, 2021 10.
Article in English | MEDLINE | ID: covidwho-1509803

ABSTRACT

The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is currently a global pandemic. Extensive investigations have been performed to study the clinical and cellular effects of SARS-CoV-2 infection. Mass spectrometry-based proteomics studies have revealed the cellular changes due to the infection and identified a plethora of interactors for all SARS-CoV-2 components, except for the longest non-structural protein 3 (NSP3). Here, we expressed the full-length NSP3 proteins of SARS-CoV and SARS-CoV-2 to investigate their unique and shared functions using multi-omics methods. We conducted interactome, phosphoproteome, ubiquitylome, transcriptome, and proteome analyses of NSP3-expressing cells. We found that NSP3 plays essential roles in cellular functions such as RNA metabolism and immune response (e.g., NF-κB signal transduction). Interestingly, we showed that SARS-CoV-2 NSP3 has both endoplasmic reticulum and mitochondrial localizations. In addition, SARS-CoV-2 NSP3 is more closely related to mitochondrial ribosomal proteins, whereas SARS-CoV NSP3 is related to the cytosolic ribosomal proteins. In summary, our integrative multi-omics study of NSP3 improves the understanding of the functions of NSP3 and offers potential targets for the development of anti-SARS strategies.


Subject(s)
Coronavirus Papain-Like Proteases/physiology , RNA-Dependent RNA Polymerase/physiology , SARS-CoV-2/physiology , Severe acute respiratory syndrome-related coronavirus/physiology , Viral Nonstructural Proteins/physiology , COVID-19 , Humans , Proteome , Ribosomal Proteins
SELECTION OF CITATIONS
SEARCH DETAIL